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Let {X,}>_, be a sequence of iid. Bernoulli random variables (i.e., X, takes
values {0, 1} with probability 3 each), let X=3%_, p"X,,, and let u be the corre-
sponding probability measure. Erd6s-Salem proved that if §<p <1, and if p~' is
a P.V. number, then u is singular. In this paper, we study the algebraic structure of
p and the singularity of the correspondent u in more detail. We introduce a new
class of algebraic numbers containing the P.V. numbers, and make use of the self-
similar property determined by such numbers to calculate the exact mean-quadratic-
variation dimension of u. This dimension is most relevant to Strichartz’s recent work

.on Fourier asymptotics of fractal measures. © 1993 Academic Press, Inc.

1. INTRODUCTION

Let {X,}®_ , be a sequence of iid. Bernoulli random variables (i.e.,
X, takes values {0,1} with probability 3 each). For O<p<1, let
X=(1-p)>X> ,p"X,, and u the corresponding probability distribution,
then u is supported by [0,1] and is the infinite convolution of the
sequence {u,}>_,, where u, is the point mass measure concentrated at 0
and (1 —p) p", with weights 5 each. Following the notation of Alexander
and Yorke [AY], we call such u an infinitely convolved Bernoulli measure
(ICBM). It is known that if 0 < p < 1, then u is a Cantor-type measure with .

Hausdorff dimension
diMgaus(p) = inf{dimya,(E): w(E) =1} = ln 2/lnpl.  (L1)

If p =1, then u is the Lebesgue measure restriction on [0, 1]. For 3<p <1,
the situation is completely different: it was a conjecture in the 1930’s
that such u should be absolutely continuous. This was disproved by
Erdés [E17; it is then known that if p =2'% k=2, 3, 4, ..., or for almost all
p sufficiently close to 1, then p is absolutely continuous [E2]. More
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336 KA-SING LAU

fascinating results are known if B=p~' are algebraic integers: Let
Bi, -, B, denote the algebraic conjugates of f, then

(a) pBis a P.V. number (ie., |f]>1, and |B,]| <1, i= 1; .., m) if and
only if 4({) 0 as £ - 0. In particular u is singular [S].

(b) If BI1,4,>1 B:=2, then u is absolutely continuous. Note that in
this case |B,| > 1 for i=1, ..., m, necessarily [G].

There is still no satisfactory classification of p for u to be singular or
absolutely continuous. For 0-< p < §, one can easily determine dim (%),
the “degree of singularity” of u, as in (1.1); for <p <1, with p~1=p a
~ P.V. number, it is difficult to evaluate such a dimension exactly (see [AY ]
for the case p= (\/g— 1)/2, and also [PU]). Recently another type of
dimensional index for fractal measures is being studied; it is natural, easy
to calculate, and adapts well for Fourier analysis ([L, LW; Str1-4]). Our
main purpose in this paper is to study such a dimension for the ICBM
derived from a class of algebraic integers f=p~' which contains the
P.V. numbers in (a).

For a bounded nonnegative measure u on R? we let

' 1
PR =z | m(Qu(x))? d,

where Q,(x) is the half open cube 1_[;1:1 (x;—h, x;+ h]. It follows from a
theorem of Hardy and Littlewood [HL] that sup,_, #%h) < co if and
only if u is absolutely continuous with du/dx =g in L*(R¢), and

mn¢MKM=J 22
h—0 R4
We define the a-mean quadratic variation (m.q.v.) of u as lim sup noo DPU(h),
and the m.q.v. dimension of u as

dim,, ., (u) =inf{o: 0 <lim sup @ (h)}. (1.2)

‘ h—0

Note that the set of o above is non-empty as it always contains d (for
otherwise, lim sup,,_, , @“(4) =0 implies that sup,_, ®“@(h) < co. By the
above remark, du/dx =g for some square integrable g on R¢ and

0= lim &(h) =f &
’ R

h—>0 -
Hence y=0 and is a contradiction). It is clear that if f =dim,, ,, (u), then

{0 if a<p

lim sup @™(h) = o it o> p

h—>0
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Also dim_, () <d implies that p is singular. For the two extreme cases:
if p is absolutely continuous, then dim_ (u)=d; if pu is a discrete
measure, then dim_,,(#)=0. The mean quadratic variation of fractal
measures together with its Fourier transformation has been studied in
detail in [L, LW, Str1-47; there are identities and inequalities analogous to
the Plancherel identity. Some of the ideas developed there can be traced
back to Besicovitch’s almost periodic functions, and Wiener’s generalized
harmonic analysis [W], where they dealt with the case « = 0 for some class
of distributions. ‘

Recall that a probability measure p on R is called a self-similar measure
[H] if u satisfies

Hu= Z ajNOSj_la . - (1.3)
j=1
where S;(x)=p,R;x+b; with 0 <p;<1, R; rotations on R? b,e R and
a,>0,a;,+ --- +a,=1 For §;:R—>R, i=1,2, with

Si(x)=px, S(x)=px+(1-—0p), x e R, | (1.4)

and a, = a, = 1, the self-similar measure equals the ICBM described above
[L, Theorem 4.3]. For the case 0<p <3, (1.1) has been extended as
follows ([LW, Str41): ' |

If {S;}7, satisfies the open set condition with an open set U such that
 u(bdryU)=0, then dim (p)=o where « is given by >7_, a;p; *=1.
Moreover the mean quadratic average g(r)=r"""% {7 |4|*> of the

Fourier transformation /i is asymptotically multiplicative period.

For the case £ <p <1 ({S;}7_, does not satisfy the open set condition),

only the case p = (\/g— 1)/2 has been considered [L]. By reducing the
expression of the mean quadratic variation to a functional equation and
making use of the renewal equation in probability theory, it is proved that -
the m.q.v. dimension a of p satisfies ’

(4p%)° —2(4p*)> —2(4p*) +2=0  (¢=0.9923994..).

Note that the above formulas determining the dimensions in the two cases
are significantly different. In the following we continue on the case
l<p<l For 1<f<2, welets¥=0,s"*V=ps"+¢,, ¢,=0,1, or —1.
We call an algebraic number f an F-number if the set

Wy={s" s <1/(f—1),neN}

is .a finite set. This class of numbers contains .élll P.V. numbers
(Theorem 2.5), in particular (\/5 + 1)/2, and is contained in the class of
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Beta numbers of Renyi [P, Proposition 2.6]. Our main theorem is the
following (Theorem 4.2):

THEOREM A. Suppose 1<p <1, and p~*=pf is an F-number. Let u be
the ICBM determined by p as in (1.4), then u is singular. Moreover
a=dim,, (1) (< 1) is given by 4p* = A, where 1 is the maximal eigenvalue
of some non-negative matrix A determined by p.

The main idea of the proof is to apply (1.3) repeatedly to the right-hand
side of

1 0
= | w(Qu(x)dx.

@(a)(h) = hl

(a is to be determined.) This iteration process yields a functional equation
in terms of a linear operator T over the vector space generated by the
elements of Wy considered as “words” (see (3.6)). The finiteness of W then
allows an explicit matrix representation 4 of 7, the maximal eigenvalue,
and hence the m.q.v. dimension can be calculated.

Once the dimension is known, the Fourier transformation [ of the
ICBM determined by the F-numbers behaves similarly to the general case
of self-similar measures with the open set condition (Theorem 4.8).

"THEOREM B. Let p and o =dim,, . ( 1) be as above, and let

1 r
q(r)—rl_

| A%

—r

Suppose A is irreducible, then q(r)#O0 is an asymptotically multiplicative
periodic function of period p, ie., im,_ (q(r)— (r))-—O where G(pr)=

g(r) for r>0.

The theorem hence provides different information on g compared to that
given by Erdés-Salem’s result in (a).

We organize the paper as follows: in Section 2 we introduce a family of
random paths generated by B and the subset W, of the states of the paths.
The class of F-numbers is defined in terms of Wp; it contains all P.V.
numbers, and is contained in the class of Beta numbers. In Section 3 we
use the self-similar property and the mean quadratic variation to set up a
dynamic on a set of lines 4 considered as symbols. The dynamic on 4 is
represented as a map T in (3.6) and is used to obtain a functional equation
(Proposition 3.3) which the theory is based upon. The set of relevant
symbols is identified with Wps. In Section 4 we make use of the Perron—
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Frobenius theorem on non-negative matrices and a functional equation
(Proposition 3.6) to prove Theorems A and B. Finally, in Section 5, we give
some numerical examples and discuss some unsettled relationships of the
class of F-numbers with the P.V.numbers, Beta numbers, and Salem
numbers.

2. SoME ALGEBRAIC NUMBERS

For f>1, we define a family of “random paths” as follows: let
5@ =g, =0 be the initial state, for (¢;, .., &,), &,=00or £ 1, 1<j<n, let

n—1

s =5V 4, = 3 6, B
Jj=0 :

be the path at the nth stage. For any two states s, s', we write s <a1s’ to
mean that there exist (g, .., &,) such that s=5® and s'=s"), 1<k <n
(i.e., s’ is connected to s via (g; .1, .., £,)); they are called bi-connected if
s<as’ and s’ <as. ' ’ '

ProroSITION 2.1. For f>1, let M=1/( _ 1). Suppose s <1s', then

(i) if |s'| <M, then |s| <M,
(il) if s is bi-connected to 0O, then s is also bi-connected to 0. In
particular, both s and s' are bounded by M.

Proof. Suppose |s| = M. Let s =s%), s’ =5, with k <n, then
|s@ D = [BsO tep | Z2f-M—1=M.

Inductively, we have |s®| > M and (i) follows. |
The first assertion in (ii) is a direct consequence of the definition of
bi-connectedness. The second assertion follows from (i).

Let
n—1
Wo,ﬂ={s= Y e, ;pre;=00r £1,1<j<n, neN}
j=0
be the states of all the paths, and let

1
Wﬁ={SE Wo,ﬂl Ki <Fl—}
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It follows from Proposition 2.1 that if a path steps outside the interval
(—1/(/3—- 1), 1/(f — 1)), then it will never return.

PROPOSITION 2.2. Suppose B>1 is an algebraic number with minimal
polynomial p(x). Let E= {se Wy:s is bi-connected to 0). If E% (&, then
#E>2(degp)+ 1.

Proof. Since E # (7, there exists a path that starts at 0, passes through
some se E, and ends at O; ie., 1’"01 €,_; /=0 for some (e, ..,é&,). Let
m be the smallest of all such 1ntegers n, and let (¢, .., &,) be the corre-

sponding vector defining the state s™ (= 0). Let

k—1

. J=0

Then E, < E, and the minimality of m implies that all the elements of E,
are distinct so that #E,=m. Also by symmetry, —E,< E. Note that

—Eon Ey={0}: for otherwise there exists s = —s*) £ 0 for some k' > k,
say; then the path defmed by (&, ..., &,) from 0 to O can be shortened as
(815 s Eks — & 41, oy —E&,,) which contradicts the minimality of m.

Smce p(x) is the mmlmal polynomial of B, p(x) divides >77,' &, _; x/, $0
that (m — 1) >deg p. It follows that

#EZ2(#E)—1=2m—1>=2(degp)+ 1.

(subtract 1 because 0 is used twice).

PROPOSITION 2.3.  Suppose 1 < <2 is an algebraic number with minimal
polynomial p(x), then #(Wy)>2(deg p)+ 1.

Proof. We need only consider the case # (W) < co. Consider the map
F defined by F(x)=fx+e¢, where e=0if 0<Bx<1, and e= —1 if > 1.
Let §=1, &= —1, by taking x=1, we have F(1)=8—1, F*1)=
B(B—1)+¢&,, where &,=0 or —1, and

Fi(1) = Z §,_, B e[0,1)
j=0

Let (g4, ..., &,4.1) = (&g -y &,), We see that F"(1) are states in Wyg. Since W,
is a finite set by assumpt1on there exists m and »n smallest such that i >n
and F’”(I)—F”(l) ie., :

h

i Em— jﬁj Z 3 jﬁ:l’:‘().

j=0
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This implies that f§ is a root of the polynomial g(x) of the above form, p(x)
hence divides q(x) and m >deg p. Also the minimality of m and »n implies
that all the 3% (&, 8/, 0<k<m—1, in Wy are distinct. The number
of non-negative elements of W, is hence >deg p, so that # (Wg)=
2(degp) — 1.

We call an algebraic integer 1 < f <2 an F-number if W is a finite set.
An algebraic integer f is called a Pisot-Vijayarahavan (P.V.) number if
f>1 and all its conjugates have moduli less than 1.

PROPOSITION 2.4. Suppose 1 < f <2 is an F-number, let E= {s€ Wy:s is
bi-connected to 0}. Then E# 5, so that #(W;)= #E>2(degp)+ 1.

Proof. Let q, q' be any two polynomials of the form >'7_, a;,x’, a,=0
or 1, then g¢(B)—q'(B)=27_o& B, &,=—1,0, or 1. It follows from the
assumption that if g(f) #q'(f), then

|4(B)— ¢'(B)| > min{|s|: s€ Wj, s %0} >0.

Note that lg(B)| < CB”". On the other hand there are 2" combination’s of
such g(f), hence there exist ¢, ¢’ such that g(f)—¢q'(f)=0. This 1mp11es
that E # (5. The rest of the statement follows from Proposition 2.2.

By using an idea similar to that in [Sc], we prove

THEOREM 2.5. Suppose 1<f<2 is a P.V. number, then B is an
F-number. ' -

Proof. Let p(x)=x%+a,_x* '+ - +a,, a;,eZ, i=0,.., d—1, be
the minimal polynomial for f= f,, and let §,, ..., f, be the conjugate roots.
For each », let

n—1
s= 3" En_; Bl Wp.

j=0

By using p(f,) =0 and long division, we can write
| d—1 . S
=Y pPBi, 1)
j=0 )

where p{” € Z. Note that f; is a root of l(x)—- "o En X! =2020 pixd,
so that p(x) divides I(x). Hence f;, i=2, .., n, are also roots of /(x). This
implies that

n—1 d—1 .
0= % e Bl= X PR i<k<d 22)
j =0

j=0




342 © KA-SING LAU

which can be expressed in matrix form:

. d—1

s Py Lo e
- |=4 : , where A =| : :

d—1

g pa2d Lo p="

Since A is non-singular, we have

e e
= A —1

Pgl) 1 ngn)

It follows from the definition of W, that |s{”| < (B8 —1)~'. Since B is a P.V.
number, the conjugates f, have moduli less than 1, and (2.2) implies that
lsi] < (1—Br)~%, k=2, .., d The left side of the above is hence bounded
for all ne N. Consequently, {p{":neN} is a bounded set of integers and
must be finite. We thus conclude, by (2.1), that W, is a finite set; i.e., f is
an F-number.

For B>1 the Beta expansion of x is defined as X=2 081",
where a, = [fF"(x)] where F is defined as in the proof of Proposi-
tion 2.3. An algebraic integer > 1 is called a Beta number if the a,’s in the
Beta expansion of f§ are eventually periodic; i.e., there exists k and m such
that for n=m, a,=a, ,; p is called a Perron number if |f'| < B for any
algebraic conjugate ' of . It is known that Beta numbers are Perron
numbers (e g., [Li]).

PROPOSITION 2.6. If B is an F-number, then B is a Beta-number and hence
a Perron number.

Proof.. Let B=3" (a,,.,p~", where a,,,=[BF"(B)]. It follows
from the proof of Proposition 2.3 that F™(1)= F"(1) for some m > n.
Let m,n be such that k=m—n is smallest, then for any non-negative

integer /
ay=[BF"*'"1(B)] = [ﬁF”“(l)] = [ﬁF”"“(l)] =Qpikir-

This implies that {a } is eventually periodic, § is hence a Beta number, and
also a Perron number.
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3. MEAN QUADRATIC VARIATIONS
Throughout we assume that 3<p <1, and u is the self-similar measure

defined by S;(x)=px, Sy(x)=px+(1—p), xeR, and a,=a,=3. It
follows from (1.3) that

1 1
W(E) =5 u(Si H(E)) +3 u(S7 (E))

SEOCES) e

for any Borel subset E in R. Let 4 denote the class of lines y with slope 1
and x-intercept at ae R; i.e.,

xX=r+a
y:{ , — o0 << 00,
y=1

For h>0, we let ®{”(h) be the line integral defined by

D) = = | 1Q43)) Q)  (62)

where Q,=[x—h, x + h). It follows that

| e |
OO = | w(Q(t+a) m(@y(1)) at 63

Note that u is concentrated on a dense subset of [0, 1], and we see that
the “effective domain” of integration in (3.2) is on yn ([0, 1]x [0, 1])
(see Fig. 1).

7

FIGURE 1
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PROPOSITION 3.1. Let ye A and has x-intercept at a, then

(1) iy has x-intercept —a, then O (h)= D (h) for all h> 0.
(1) a¢[—1,1] if and only if there exists hy> 0 such that ¥ (h)=0
Jor O < h<hy.

(iti) For a=1 or —1, there exists 6 >0 such that for 0<a<1,
@M (h) = o(h®) as h— 0.

Proof. (i) follows from a change of variable by s=t¢+a in (3.3). To
prove (ii), we use an argument which is clear from Fig. 1. If a¢ [ —1, 17,
. let hy=(la] —1)/2, then for O0<h<h,, —o0<t<oco, either Q,(t)n
[0,1]1= or Q,(t+a)n[0,1]=¢. Since u is supported by [0, 1], it
follows that

| 1(@4x)) @iy =0,

so that @(h) =0 for 0 </ <hy. On the other hand, if ae [ —1, 1], then,
for any h, there exists ¢, such that [ty—h, to+h) and [ty+a—h,
to + a -+ h) intersect [0,1] (if 0<a<1, take £, =0, and if —1 <a <0, take
to= —a). It follows that u(Q,(¢,)) and u(Q,(t,+ a)) are both nonzero.
This implies that A ‘

| 1(@4(x)) 1(@u(»)) %0,

and hence @M (h)#0 for any h> 0.
For (iii) we assume that a = 1. Hence

o0

|7 woute+ 1) w@un=[" weue+ 1) ueun)

<([ meue0n) (|

" weior<2[ e

h

1/2
| Iu(Qh(t))I2>

(The second equality holds since u is symmetric about ). Note that for
E<[0,1—p), (3.1) implies that u(E)= 3 u(E/p). Hence

h 1 ph ’
J, 1u@unr =7 [ 1n(@uselo))?

h/p noahfp" |
=& [ =(5) [ 1o
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provided that 4/p" <1—p. Let N=[(In(4/(1 —p)))/In p], then

[ @ <(3) [ mewor

N 1—-Ind/Inp
P h 246
<({=] £— = o(h ,
<4) (1—p> ol )

for some 8 > 0. It follows that & (h) = o(h®).

We consider 4 as a set of words and that it spans a real vector space
{4>. According to the common convention of line integral, we have

0 3%2)

c1y1+ - +cp¥n

(h)=c, () + -+ +¢, DD (h) |
for any c¢;y,+ -+ +¢,y,€ {4>.
LEMMA 3.2. Let ye<{d). Suppose that & (h)=0 for all h>0, then
y=(C1yi+ - +cnvn)'— (cryi+ -+ +c,v0),

where y;,y; € 4 have x-intercepts a;,, —a;, 1 <j<n, respectively. |

Proof. Let y=3" ¢y, then @(“)(h)—O implies that |, ,u(Q,,(x))‘
w(Qn(y))=0, ie.,

Z j W Qu(t+a)) w(QA(1)) dt = forall h>0. (3.4)

Denote F(t)= u(— oo, t], then

[ woueny e ar=[" (F(t+h)—Fu—m) e ds

1 o :
=—-—i£ e d(F(t+ h) — F(t — h))
_Sin hé o1 d t')-
sin h&j
4(¢
= A(¢) 7
By Plancherel theorem, (3.4) reduces to
, sin hé i .
o f | 4(8)] “tdf=0  forall h>0.  (3.5)

j=1
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Since u is symmetric about 1,

jw it d,u(t)=Joo e du(1 = 1).

— OO0 - 00

This implies that {(&)=e “a(—¢), so that (&) =|A(—¢)]. We can
rewrite (3.5) as

o) m m fea 2
jo ( Y ¢e it Y cje—fafé) |A(&)]? Smézh& d¢=0  forall h>0,

j=1 =1

' Wiener’s Tauberian theorem [T, Theorem 7.6] then implies that

< Y, ety cje_i"f§> |A(E)]*=0 forall ¢eR.

=1 Jj=1

This can only happen when ¢;= —c¢,, a,= —a, for some j#k. By rear-
ranging the indices, y is of the form as stated.

Let T (4> — {4 be the linear map defined by

T(p) =y 42O 4y, yey, (3.6)
where
x—t+<g+81“p>
p(®); B 0 e/, — o0 <t< o, (3.7)
y=I

and e= —1, 0, or 1. Note that ) has x-intercept a/p + &(1 — p)/p (Fig. 2).
The most important property of T we use is the following:

A

| 1)
Y . Y( 1 (0)
- (L
/\ Y
- > /] /] _
a ///’

FIGURE 2

t
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‘ProPOSITION 3.3. For O0<a<l1, yeld), h>0, we have &P(h)=
1/4p* B (h/p).
Proof. By the linearity of T, we need only consider y € 4, i.e‘.,
{ =t+a _
Y , — 00 <t < 00.
y=t

It follows from (3.1) that

200 =g [ (1( 2 (%) +u(0us (‘E"l“;‘ﬁ»)
<(k(om () +4 (o (5-52)))

The integrand multiplies out to have four terms. First we have

[ n(ew(3))n(ew(3))=1"x ('Qh/p (Z4)) e (om(3)) a
-l w(em(1+5)) D)t

=p H(Qh/p(x)) .U(Qh/p(y))-

@

Similarly, we can show that

[ (@ (%)) n(2m (2=2)) =0 [, #@ust) u@usi)

L (Qh/f’(% - 1%)) H <Qh/p <%>) =P 1(Qyp(x)) u(Qh/p(y)),:

and
[(on (5-52)r(u (3-52)
—p ij) H(Quyo () Q)

" Putting these together we have &{* = (1/4p%) D) (h/p).
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Let =0, and let y°=9y*e 4 be the line with x-intercept 0. Define
Pt = (p2o -1y where ¢,= —1,0, or 1 as in (3.7). Note that y®
has x-intercept at

n—1

1— |
Ly e, (3.8)
P j=0

Let

Io={y® "*:neN},
I'={yeIy: v has x-intercept at (— 1, 1)}, and
I'" ={yeI'y: y has x-intercept at [0, 1)}.

Since each y is determined by its x-intercept, by multipiying with p/(1 —p)
the expression in (3.8), we have

PROPOSITION 34. Let B=p~*, then y® eI, (or I') is one to one
corresponding to the state s e Wo, 5 (or Wy, respectively) determined by
(805 s €,)- Moreover T can be consider as a transition operation from s to
the three states s" 1 =ps" 4¢,. |, €,,,=—1,0,1 with weights 1,2, 1,
respectively. .

LEMMA 3.5. T is invariant on {I\\I ).

'Proof. " The simple proof is essentially the same as in Proposition 2.1.
Let yeI')\l, then y has x-intercept at a>=1 (or < —1), and »® has
x-intercept a/p + (1 —p)/p, e= —1, 0, or 1. That '

11— 1 1-
g—l—a P p
p p p P

implies that 7'(y) =y ™Y+ 2y +yWe I\,

Recall that if ¥ is a vector space with V=V, @ V,, and if S: V> V is
a linear map invariant on V,, then we can define the quotient map
S: V/V,— V/V,. By identifying V/V, with V,, the map S: V, — V, is given
by S(u)=v where u,ve V, with S(u)=v+0v’, v' e V,. It is easy to show
that (8)"=(S8")~. If V is finite dimensional, let {ey, .. e, be a basis of
Vi, {€ms1> - €n} be a basis of V,. Let A be the matrix representation of
S with respect to the basis {e,, .., ¢, }, and let 4, be the matrix representa-
tion of § with respect to the basis {ey, ..., €, }, then

‘A=[A1 0]
‘Bl Az
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It follows from Propositidn 3.5 and the above remark that we can define
the quotlent map T:{I'»— {I'). Define also T*:{I'*> > ("> by
T+ =mnoT, where n is the projection map of {I") onto {I"*) given by
n(y)=7y', where y and y’ have x-intercepts a and |a|, respectively.

We use the following proposition repeatedly in Section 4.

PROPOSITION 3.6. Let ye{I"" >, then
(i) @(h)=0 for all h>0 implies that y =0,
(1) there exists 6 >0 such that

1  /h
D(h) = — qs;im (;) +o(h®), >0,
where o(h®) =0 is zero order h® as h — 0.

Proof. (i) follows from Lemma 3.2. To prove (ii), we use Proposi-
tion 3.3 and observe that

DT (1) = DT ()
(Proposition 3.1(i)), and
di(“))(h)— @ () + o(h®)

(Proposition 3.1(ii), (ii1)).

The reader is referred to Section 5 for some concrete examples of I, I" ™,
that are finite sets, and the matrix representation of 7' and 7 on them.

4. THE THEOREMS

We use some facts concerning eigenvalues of non- -negative matrices
(Perron—-Frobenius Theorem, see, e.g., [Se, V]). Let 4 =[a,] with a,j>0 ,
then 4 has a positive eigenvalue A such that |1’| <1 for all other eigen-
values A" of A4, and the corresponding eigenvectors have nonnegative
coordinates. Also

min 0; < A <max g,, (4.1)

J J .
where o;,=37_, a,. If A is irreducible, then A is simple, the corresponding
eigenvector for A has all coordinates positive, and A equals the maximum
or minimum if and only if ¢,= --- =¢,. If further A is aperiodic (also
called primitive, ie., there exists n such that all the entries of 4" are
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positive), then [A’'| < A. A sufficient condition for a non-negative matrix A4
to be aperiodic is that A4 is irreducible and some of its diagonal elements
are positive [V, p. 43, Ex. 1].

It follows from definition that if p~!=pf is an F-number, then I is a
finite set, hence T: (I") » (I'>, T+:(I'*> > (I"*) have non-negative
matrix representations and the eigenvalues exist.

PrROPOSITION 4.1. Let 1< p <1 such that p~'= B is an F-number, then
the maximal eigenvalues of T and T+ are equal.

Moreover if T* is irreducible, let A be its maximal eigenvalue, and let A’
" be the other eigenvalues, then |1'| < A.

Proof. 1t is easy to show that T+*on=no7. Let A and A" be the
maximal eigenvalues of T and T, respectively. Suppose ye (I"> is an
eigenvector of T corresponding to A, then y =3, ¢,y,, y,€ I, ¢,>0 but not
all 0. This implies that n(y)# 0. Hence

Tf(ﬂ(v)) =n(T(y)) =n(dy) = An(y)

and A is an eigenvalue of T*, so that A<A*. On the other hand, taking
the adjoint of the identity 7+ o =m0 T, we have n*o (T *)* = T*on*. The
eigenvalues of T* and (7T *)* are unchanged, and the same argument as
above implies that 1+ < A

To prove the second assertion, we need to recall that 7(y°) = (yo)( )+
2(y2)® 4 (y°)® hence

TH(y%) =2(y) @ +2(y%) ™) = 290 4 2(y*) V.

This implies that the entry corresponding to y° on the diagonal of matrix 4
representing 7 is not zero. The remark before the proposition implies
that A4 is aperiodic, and the result follows.

Our first main theorem is

TueOREM 4.2. Let i< p <1 such that p~' = is an F-number, and let p
be the self-similar measure defined by p as in (3.1), then u is singular
Moreover, dim , . . (1) = o is given by 4p* = A, where A is the maximal eigen-
value of T on {I' ).

We need a few lemmas.
LEMMA 4.3. Suppose B=p~ ' is an F-number. Let A be ‘the matrix
representation of T~ on {I' ") with respect to the basis I' ", and let ) be
the maximum eigenvalue of A, then A <4, and A # 4p.
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Proof. Note that the orlglnal definition of T on y e I', is defined in (3.6)
by T(y) =y +2y©@ 4+ 9™, T(y) defined on I' is obtained by truncating
the component y® that has an x-intercept outside (—1, 1). Hence the
matrix representation of T* on (I'*) with respect to the basis I"* has
column sums o; equal to either 4, 3, or 1, and not all o, are equal. It follows
from the remark in the beginning of this section that 1 <4 (consider the
irreducible component corresponding to A).

To show that 4 # 4p, we assume the contrary; suppose 4p is the maximal
eigenvalue of 4. Let g(x) be the characteristic polynomial of A4, it has
integer coefficients. Let p(x) = J_l a,x’ be the minimal polynomial of
B=p % and let ﬂ denote conjugate roots of f, then 4p, 48’ satisfies
ﬁ(x)— 1—1 47a,x“~7. It follows that p(x) divides g(x), so that both 4p,
48’ ~! are roots of g(x), hence eigenvalue of 4. On the other hand B is an
F-number, Theorem 2.6 implies that |f’| <p so that |48 1| >4p. This
contradicts that 4p is the maximal eigenvalue of 4, and the proof is

completed.

- LEMMA 4.4. Under the same hypotheses and notations of Theorem 4.2,
then for any 0 < f < a,

: 1 o
limsup -5 | (@) =0.
h—0 — 00
Proof. We prove the lemma by considering the following two cases:

(i) A isirreducible: Let y be an elgenvector corresponding to /1 then
Y =2 ,.er+ ¢;V; Where ¢;> 0 for all such i. By Proposition 3.6,

1 h A h
DM (h) =—— D) —) )< —5o® (—) h?).
(h)= 2,7 P 5 +o(h?) 7 2\ +o(h°)

A direct computation shows that

A AN
q5§ﬂ>(p"h)<(4p,,> @(ﬂ)(h)+z< ) o(p’h)°.

Jj=1
This implies that for max{A/4p”, p°} <b <1,
n n o
oP(p h) < B"(PP(h) + o(h°)), (4.2)
hence lim, , ®{P(h)=0. The positivity of ¢; corresponding to y,=7°

implies that

o= lim oY) =lim o [ Iu(Qh(t))l2
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(i1) A is reducible: By rearranging the basis elements, we can assume
that :

"4, 0 - - -0

A,

. —

where A is zero on the upper right triangle, and each A4, is irreducible. The
assumption implies that all eigenvalues are not greater than A =4p”* Let V;
be the corresponding subspace of 4,. The same argument as in (i) apphed
on T;:V,— V,, the restriction of T+ on V,, implies that there exists an
elgenvector y=>,¢v; With ¢;>0, y,e I'* n V', such that (4.2) holds. The
positivity of ¢, further implies that there exists 0 <b <1,

D (p"h) <b(@P(h) +o(h?)),  y,e* AV, (4.3)
" so that
@)()’ﬁ)(h)zo(h’“), r,yier+ A Vl, (44)

where #, =1In b/1n p > 0. Assume (4.3) and (4.4) hold for Vi, ..., Vj_1 Let
T . V,—> V, be the induced map with representation 4;. Let y be the
elgenvector of Tj+ on V; with y= }: c; y,, c; >0, y,eF+ N V;. Note that
T+(y)= T*(y)—i—y where T*(y)e Vi @ ---@V,. Hence

Try+vy

A h 1 h
<2 o® (2 (7 N
4pﬂ@v ( ) v — o (p)—l—o(h)

The same iteration argument implies that there exists 0 <b <1,

1 h 1 h
qbgm(h):—@(fly( >+o(h5)_—-—q5<ﬁ’ <—>+o(h5)
p 4p? p

P (p"h) <b"(DP(h)+ DL (h)+0(h%), yel*nV,

this implies that ®{P(h)=o(h"), n,>0, yeI'* nV,. It follows from
induction that ‘

lim @P(h)=0, yel*AV, j=1,..k
h—0 .

One such y must equal y°, and the same conclusion as that in (1) follows.
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COROLLARY 4.5. Under the same hypotheses and notations as in
Theorem 4.2, then 4p < A < 4. ~ ‘

Proof. In view of Lemma 4.3, we need only show that A + 4p. Suppose
A <4p, then 1=4p* with « > 1. By taking S =1 in Lemma 4.4, we have

. I (e :
limsup - [ |u(Qu(1)]>=0.
h—0 h — 0

On the other hand, the limit supremum implies that
1 oo )
sup — | 1u(@,(1)]* < co.
h>0 h — 0
By [HL] u is abSolutely continuous and
.1 pe 2 [® [du\?
im 5 [ tmeuoi= [ (%) ax>o

h—0 h2 — 00

a contradiction.

Proof of Theorem4.2. 1t follows from the above corollary that
4p < A <4. Hence there exists 0 <o < 1 and an eigenvector ye (I"+ > of T+
such that

qb‘“)(h)- Py @(a) <%>+o(h‘5 = 4’;a ¢ (%)w(_hé),: 45;&5 <%)fo(h5).

This implies that &{(ph) = ®(h) + o(h®), so that

SP(p"h) = BP(h)+ 3, o((p!~ k).
i=1
The convergence of 3721 o(( p’~'h)?) implies that, for each A, the limit
@(h)=1lm, , cD(“)(p”h) exists. That 1 is maximal implies that y=3",¢;y,, -
y,el'SF, ¢;=0. It follows that D (h) =3, ¢, D (h) =20, so that ¢ is non-
zero. ¢ is also multlphcatlvely periodic, ie., ¢@(ph)= ¢@(h), and hence
bounded. We conclude that

SO (h) = p(h) + o), @)
and
0 <lim sup (k) =lim sup = [ w(Q,(0) W@y < 0.  (46)
h—0 h—-0 Y ’ .
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That y=>,¢,;y;, ¢;=0, y;e I'* also implies that there exists i such that

. 1 1 o
0 <timsup [ H(Q4()) 1(Quly)) <lim sup el RO

h—0 h—0

It follows that dim_,  (u)<a (<1). On the other hand, for any f<a,
Lemma 4.3 implies that

. 1 ©
limsup =7 [ [W(Qu(0)2=0,

h—0 — 0
~ so that dim, ., (u) = o

Erdos and Salem proved that for 1 <f <2, f is a P.V. number if and
only if the Fourier transformation of the self-similar measure u defined by
p = B! satisfies (&) ~»0 as & - oo [S]. In the following we consider the
mean quadratic average of the Fourier transformation of such measures
corresponding to the F-numbers. We need the following theorem which is
a special case of [LW, Corollary 4.12]: -

THEOREM 4.6. Let u be a bounded regular Borel measure on R, then the
following two. statements are equivalent:

(@) lim,_ o((1/A1%) [ m(Que)IP—@(h)) = O for some multi-
plicative periodic function @ of period p.

o (i) m, , ((U/F ) AP =4(r)) =0 for some multiplicative
period function ¢ of period p. :

Note that in the proof of Theorem 4.2, we have shown that
D (h) = p(h) + o(h?)

for the special eigenvector y (see (4.5)). Statement (i) is the case with y =y°,
and we prove it in the following theorem under an additional hypothesis:

THEOREM 4.7. Under the same hypotheses of Theorem4.2, let o=
dim_, . (u). If A is irreducible, then

@@(h) = g(h) +o(h"),
for some @ that is no'n-z.ero, bounded, and has multiplicative period p.

Proof. Note that A is irreducible, the c; in the eigenvector y=3", ¢;7, in
(4.6) are all positive, and one of the 7, equals y°. Hence (4.6) implies that

| 1
0 <lim sup (k) = lim sup - | | #(Q4(¥)) A(Q4(7)) < o0,

“h—-0 h—0

and @ is bounded.
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Let A, =4p®, 4,, .., A, be the eigenvalues of 4. Since A4 is irreducible, A,
is a simple eigenvalue and by Proposition 4.1, [4,] <A, for i=2, .., k. Let
7; be the eigenvector corresponding to A;, and let {y,} be a Jordan basis
of the eigensubspace of A, for i=2, .., k; ie.,

TH(y) =271, T+ (Vi+ 1) =AY+ 1)+ Vi

That & (k) is bounded implies that ®M(h) is also bounded. A repeated
application of Proposition 3. 6(11) yields

qsgff>(h)=0<< la>n>+0(h‘5), h>0,
i 4p A

where » is such that p"*'<h, p">h; ie., n=[Inh/ln p]. This implies
that q§§‘;)(h) is of small order A" for all i and j as h— 0. Now if we
write

'VO =d Y+ Z Z a7 s

PJ

then

D (h) := DD (h) = a, B (h) + Z Z ay @ (h) = (h) + o(h"),

where ¢ is a multiplicative periodic function of period p and 0 <y < 5.
Theorems 4.6 and 4.7 yield

THEOREM 4.8. Let $<p <1 such that p~' = B is an F-number, and let p

be the self-similar measure defined by p as in (3.1). Let « =dim_, , (n), and
suppose A is irreducible, then

s [ 1A=+ o),

¥ —

where o(1)—>0 as r - o0, ¢ is non-zero, bounded, and has multiplicative
period p.
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5. EXAMPLES AND REMARKS

ExampLE 5.1. Let p=(\/§—1)/2, then [3=(\/_5_+ 1)/2. By using
p>+p—1=0, it is easy to show that I'= {y:y has x-intercept at a=0, p,
p% —p, —p*}, I'* ={y:y has x-intercept at a=0, p, p?>}. The matrix
representation of T and T+ are

and

O = O = N
O O = O O
S O O N e
- o O O O
S NN OO =
S NN |
- o O
S N

horwt —

respectively. The corresponding auxiliary sets W, and W  are {0, 1, p,
—1, —p} and {0, 1, p}, respectively. The characteristic polynomial of 7'*
is x? —2x% — 2x + 2. The maximal eigenvalue A can hence be calculated. By
equating 4p* =4, we find that the m.q.v. dimension of the corresponding
self-similar measure is o = 0.9923994.... This result is also obtained in [L]
by using a different method.

ExaMpLE 5.2. The following is a list of P.V. numbers that the m.q.v.
dimensions have been calculated by using Theorem 4.2. It was provided by
M. F. Ma:

Min. Polynomial B p Size of A A dim_ . (#,)
x*—x?2—x—1=0 1.8392868 0.54368899 4 2.2226941 0.9642200
x=2x24+x=1=0 1.7548777 0.56984028 7 2.2941040 0.9885364
x2—x—1=0 1.6180340 0.61803340 3 2.4811943 0.9923994
cx¥—x?2=1=0 1.4655719 0.68232750 ' 25 2.7302333 0.9991163
xt—x3—-1=0 1.3802776 0.72449194 627 2.8979776 0.9999895

¥—-x—1=0 1.3247180 0.75487764 90 3.0195190 0.9999901

Note that the f corresponding to x> —x—1=0 is the smallest P.V.
number [Si]. There are only one P.V.number of degree 2 and four of
degree 3; they are all listed here. We have not been able to show that
the matrix 4 representing T * is irreducible in general. However, all the
examples above indicate that this is true, and Theorems 4.7 and 4.8 apply
to the above cases. |

The above chart is listed according to decreasing order of f; ie., the
increasing order of p. A very interesting observation is that as p increases,
the dimension increases to 1.
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The relationships of the F-numbers with the two well known classes of
algebraic numbers can be summarized as (Theorem 2.5, Proposition 2.6)

P.V. numbers < F-numbers < Beta numbers.

So far we have not been able to prove that either one of the inclusions
is proper. However, numerical evidence shows that the second inclusion
should be proper. Recall that f§ is called a Salem number if f>1 is an
algebraic integer and |f’] <1 for all its conjugate roots, with at least one
satisfying |f’| =1. We do not know how the Salem numbers relate to the
F-numbers. It is still an open question whether Salem numbers are Beta
numbers ([ Bo, Sc]).
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